Telegram Group & Telegram Channel
Почему свёрточные нейросети оказались лучше обычных (MLP, например) именно в задачах классификации изображений?

🔹Количество параметров

Представим, что вы решили использовать обычную многослойную сеть с кросс-энтропией для классификации изображений, предварительно развернув каждую картинку в вектор. В таком случае, количество параметров в первом слое будет зависеть от размерности вектора (например, 1920x1080) и числа нейронов. Если количество нейронов слишком мало, мы рискуем потерять важную информацию.

Свёрточные нейросети предлагают решение этой проблемы. Их архитектура позволяет значительно сократить количество параметров за счёт использования свёрток и пулинговых слоёв. Это не только уменьшает сложность модели, но и помогает сохранять важные характеристики изображений.

🔹Структура данных

Обычная многослойная нейронная сеть должна справляться с инвариантностью к различным преобразованиям изображений, таким как повороты и сдвиги. Это достигается увеличением числа нейронов в скрытых слоях, что нежелательно с точки зрения вычислительных ресурсов и риска переобучения.

Свёрточные нейросети, благодаря своей структуре, автоматически учитывают локальные паттерны в изображениях и могут обрабатывать данные иерархически. Это означает, что CNN способны выделять важные признаки на разных уровнях абстракции, что улучшает обобщающую способность модели и её устойчивость к трансформациям.

#глубокое_обучение



tg-me.com/ds_interview_lib/603
Create:
Last Update:

Почему свёрточные нейросети оказались лучше обычных (MLP, например) именно в задачах классификации изображений?

🔹Количество параметров

Представим, что вы решили использовать обычную многослойную сеть с кросс-энтропией для классификации изображений, предварительно развернув каждую картинку в вектор. В таком случае, количество параметров в первом слое будет зависеть от размерности вектора (например, 1920x1080) и числа нейронов. Если количество нейронов слишком мало, мы рискуем потерять важную информацию.

Свёрточные нейросети предлагают решение этой проблемы. Их архитектура позволяет значительно сократить количество параметров за счёт использования свёрток и пулинговых слоёв. Это не только уменьшает сложность модели, но и помогает сохранять важные характеристики изображений.

🔹Структура данных

Обычная многослойная нейронная сеть должна справляться с инвариантностью к различным преобразованиям изображений, таким как повороты и сдвиги. Это достигается увеличением числа нейронов в скрытых слоях, что нежелательно с точки зрения вычислительных ресурсов и риска переобучения.

Свёрточные нейросети, благодаря своей структуре, автоматически учитывают локальные паттерны в изображениях и могут обрабатывать данные иерархически. Это означает, что CNN способны выделять важные признаки на разных уровнях абстракции, что улучшает обобщающую способность модели и её устойчивость к трансформациям.

#глубокое_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/603

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

Библиотека собеса по Data Science | вопросы с собеседований from vn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA